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In this supplement we provide more detail about the statistical model that we fit to the

data, and how we account for spatial dependence to provide estimates of the covariance of

the model coefficients.

A marginal negative binomial model, that accounts for spatial de-

pendence

Suppose that there are m census tracts. Let Yi denote the number of establishments in

census tract i (i = 1, . . . ,m), and let Pi denote the population (in 1000s) in tract i. In our

marginal model for the counts Yi, we assume that the expectation is

E(Yi) = µi,

where for a set of covariates of length p, xi, and coefficients β,

ηi = log(µi) = log(Pi) + xT
i β.
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Equivalently our model for the log retailer rate is

log(µi/Pi) = xT
i β.

With a negative binomial model, the variance depends on the mean µi through the expression

var(Yi) = V (µi) = µi +
µ2
i

θ
,

where θ > 0 is known as the dispersion parameter.

To account for the spatial dependence for the counts over the census tracts we assume that

cov(Yi, Yj) =
√
V (µi)V (µj) ρij,

where ρij parameterizes the correlation in the counts between tracts i and j. We assume

a conditional autoregressive (CAR) model for R, the m ×m correlation matrix with (i, j)

element ρij. To define this correlation matrix, we first specify a m × m spatial proximity

matrix W as follows: the (i, j) element of W is equal to 1 if census tract j is a neighbor

of tract i, and zero otherwise (we assume each tract cannot be a neighbor of themselves).

Next, let C denote a diagonal m×m matrix, where the ith diagonal element is equal to the

number of neighbors that census tract i has. Then

R = C − αW ,

where −1 < α < 1 is known as the spatial dependence parameter.

An estimate of the covariance of β, assuming residual spatial de-

pendence

We fit a negative binomial model to the Yi values, assuming a working covariance of inde-

pendence between the counts. (We will correct this assumption later in the section.) Let β̂

denote the estimate of the model coefficients β under this assumption. We use a sandwich

estimator to correct the covariance of β̂ for the spatial dependence in the counts.
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Let X denote an m×p design matrix with ith row xi or (i, j) element xij, and let V denote

a diagonal matrix with (i, i) element V (µi). Let D be an m× p matrix with (i, j) element

Dij =
∂µi

∂βj
=

∂µi

∂ηi

∂ηi
∂βj

= µi xij,

since

∂µi

∂ηj
=

[
∂ηi
∂µi

]−1

=

[
∂ log(µi)

∂µi

]−1

= µi.

Then the sandwich estimator of the covariance is

cov(β̂) = (DTV −1D)−1DTV −1cov(Y )V −1D(DTV −1D)−1.

To estimate cov(Y ) for each i = 1, . . . ,m, let ri = (Yi − µ̂i)/
√
V (µ̂i) denote the Pearson

residuals of the model and note that when our statistical model is true

cov(ri, rj) ≈ ρij,

for each i and j. We estimate α from the Pearson residuals via maximum likelihood (ML). let

α̂ denote the ML estimate of α, and with this estimate let ρ̂ij denote the resulting estimate

of ρij. Then our estimate of cov(Y ) is

ĉov(Yi, Yj) =
√
V (µ̂i)V (µ̂j) ρ̂ij.

Letting J = DTV −1D, our sandwich estimator of the covariance of the estimated model

coefficients can be written as

ĉov(β̂) = J−1BT (C − α̂W )BJ−1,

where for this model

B = diag

(
µ̂i√
V (µ̂i)

)
X.
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